Image Acquisition- Sensors: MRI Gary H. Glover

Radiological Sciences Laboratory
Center for Advanced MR Technology*

Stanford University

School of Medicine

Department of Radiology

- Higher field
- Increased acquisition capabilities
- Hybrid imaging

Increased Bo (>4T)

- Increased SNR/resolution, T1, chem. shift
- Decreased T2, T2*

Increased SAR, acoustic noise, physiological noise

500 μ , 7T Josef Pfeuffer, et al

Increased Bo

Facilitates study of:

- brain biophysics/biochemistry e.g., metabolic cycles, perfusion, neuronal architecture/connectivity provides increased tissue specificity
- novel contrast mechanisms e.g. multiquantum coherence, susceptibility, currents?
- M\(\sum RS/MRI\) of other organ systems e.g. breast, musculoskeltal

Increased Gradients/Acquisition

• Insert gradient/RF coils (rapid scanning, DWI)

40 mT/m, 150 T/m/s, 8 shots

200 mT/m, 1000 T/m/s, 2 shots

• Multi-channel (e.g. 128) receivers

Hybrid imaging

- - Bo can increase PET spatial resolution (in one direction)
- MRI/S and Optical imaging
 Optical -> tissue characterization, static and kinetic (transmissive and receptive)
 - MRI -> soft tissue contrast, topography (DTI), vascular kinetics

Summary

- High field
 - 3T-4T: may become new 'high performance' MRI
 - now primarily neuro; must solve body SAR
 - phased array T/R, RF pulse design, sequence design
- > 4T: homegrown or partnership with industry
 - facilitate next stages of brain understanding
 - tissue specificity, resolution, resting state noise
 - novel contrast mechanisms
 - breast, musculoskeletal applications
- Continued hardware/sequence evolution
 - must solve large number of issues, e.g. noise, RF effects
- Hybrid imaging- synergistic combination w/ molecular imaging